

Cyber-warfare Versus Cyber-terrorism: An Emerging 21st Century Trend

Iepa Karlavičiūtė ¹

¹ Associate Professor, Faculty of Political Science & Diplomacy, Vytautas Magnus University, V. Putvinskio Str. 23-604, LT-44243 Kaunas, Lithuania

Correspondence: ieva.karpaviciutempd@vdu.lt

Article information

Article History:

Received: 2025-09-17

Received in revised form:
2025-10-03

Accepted: 2025-10-21

Published Online: 2025-11-17

Keywords:

Cyberspace; Trends and
Methodologies; Cyber-
terrorism; Government
Cyber-warfare.

ABSTRACT

The rapid evolution and interconnectedness of cyberspace, driven by technologies like the Internet of Things (IoT) and Supervisory Control and Data Acquisition (SCADA) systems, have created a landscape highly vulnerable to sophisticated cyber threats. This paper analyzes the emerging trends and methodologies of cyber-attacks, focusing on the concepts of cyber-warfare and cyber-terrorism. Advanced Persistent Threats (APT), Island Hopping, and attacks leveraging Bring Your Own Device (BYOD) policies and SCADA systems are detailed as key offensive strategies.

The analysis highlights how terrorist organizations like Al Qaeda and Hezbollah exploit cyberspace for fundraising and information warfare. It differentiates cyber-terrorism—unlawful attacks causing violence or harm to coerce government or people for political objectives—from broader information warfare. Given the low entry barriers for attackers, the widespread prevalence of cybercrime, and the increasing economic dependency on information infrastructure, the paper concludes that robust cyber defense strategies are essential. Recommendations include strengthening international cooperation, establishing quick response teams, and employing layered counter-strategies such as Denial and Deception (D&D) and Support Vector Machine (SVM) methods to secure the cyber domain.

Introduction

Now the world is more self-sufficient in making life easier with the help of emerging

technologies. The machines are helpful in making complex tasks very easy to be done.

© 2025 by the Authors. Licensee Karlavičiūtė. This article is an open-access distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License <https://creativecommons.org/licenses/by/4.0/>

The Journal is published quarterly (March, June, September & December) by the Centre for Children Literacy and Lifelong Learning (CCLL), Pakistan. Web link: <https://ccll.org>

The cyberspace is now going beyond from mere concept of integration of computers rather focused on the evolution of various devices as well as machines. Cyberspace has been defined as "an environment where storage, processing and communication are carried over computer and networking infrastructures" (Wikipedia, Accessed on October 16, 2019).

Cyberspace has further been used Cyber Physical System where the operators are taking place their actions through preprogrammed instructions and controlling systems. Tzipora, Haoyu, Nitesh, Jonathan, and Tuo, (2014) argued that today Cyber Physical Systems have been used in chemical procedures, healthcare infrastructure, entertainment industry, manufacturing, military operations and transportation. Cyber Physical Systems are not only used in complex technological areas yet they are also used in automotive and in creation of most complex cyber warfare tools.

Jan, Oscar, and Klaus, (2014) said that by the emergence of new technologies cyber-attacks are not limited to computers only yet they are expanded to industrial as well as military level. However, emerged now tools "SCADA (Supervisory Control and Data Acquisition)" are considered necessary for the control and monitor appropriately (Goodman, 1997). In this world, every system is interconnected with IoT (Internet of Things) which is a common technology where cyber-attack is expected. (Aditya, & Richard, 2013; Aditya, Rohit, & Richard, 2013; Ross, & Log, 2015).

SCADA systems usually adopt IoT technology to connect with the cyberspace with the purpose of controlling and monitoring physical infrastructure. The interconnection of IoT and SCADA provides a very supportive and secure environment. Another technology RFID (Radio Frequency Identification Device) has widely been used to keep track of the devices as attackers are found in search of personal information for their personal interests (Andrew, Stuart, Shaun, Tanuja, & Helge, 2012).

Further, cyber threat can be defined as it is an act of making huge damage to the computer network of any communication system with the effort of

malicious tools. The attack or series of cyber-attacks can be initiated by the help of any organization, individual or even government from remote location (Juels, 2006). While, cyber defense is a technique to safeguard oneself from the cyber-attack however the preventive measures which are taken before considered more appropriate rather initiating an enquiry after cyber-attack (Daniele, Velio, Giovanni, & Aurelio, 2003; John, & Andres, 2005). These measures are also called cyber security and it can best be defined as taken measures to avoid any damage or malicious control over computers through hardware, software or any other human activity (Anita, Kirsten, Daniel, Brianne, & Emilie, 2005; Pin-Yu, & Kwang-Cheng, 2012; Pin-Yu, Shin-Ming, & Kwang-Cheng, 2014). Another term in this regard used is 'cyber forensic' which is also called 'computer forensic science' which dealt with the evidences found on the computers and storage media. It aimed at knowing the reasons and evidences which further led to the enquiry of interruption with computers or computer networks (Re 'ka, Hawoong, & Albert-Lazlo, 2000).

Emerging Cyber Strategies Used

Now days, cybercrimes are being committed with more organized way to interrupt the communication systems of the victims. The attackers are mostly applying these three steps before initiating any cyber-attack:

- **Information Collection:** The first and most important step considered is information gathering. In this regard, Open Source INTElligence (OSINT) method has been widely applied using DNS query. This information is collected using open ports and employing the XSS (Cross Site Scripting), SQL injections etc.
- **Threat Modeling:** In this second step the attackers are mapping the victim's machine and trying to access and also trying to measure the level success and risk.
- **Attack and Exploitation:** The final step taken to attack and exploit the communication system of the victim (Shui, Song, & Ivan, 2015).

Here are some advanced and emerging methodologies used in cyber-attacks:

APT (Advanced Persistent Threat)

This is the most dangerous methodology used in cyber-attacks. These types of methodologies are usually applied in social, economic and online or social media. APT ensures the persistent access to the victims' machines rather focused only on entry. The historic investigation of the methodology reveals that it has been used as ghost attack by sending an email to the victim with malicious material through different codes. It

ensures the activation of Remote Administration Tool (RAT) kit (Shui, Song, & Ivan, 2015).

The major objective gained through this method is acquisition of properties information and sensitive personal information gained through Internet Explorer. Then the attackers are able to damage the system of the designated victim using BGP (Border Gateway Protocol) (Rogers, 2006). In year 2010, the new emerged method STUXNET to indulge into the SCADA's PLC (Programmable Logic Controller) with the help of DUQU (Ahmed, Mona, Kaveh, & Joaquim, 2013).

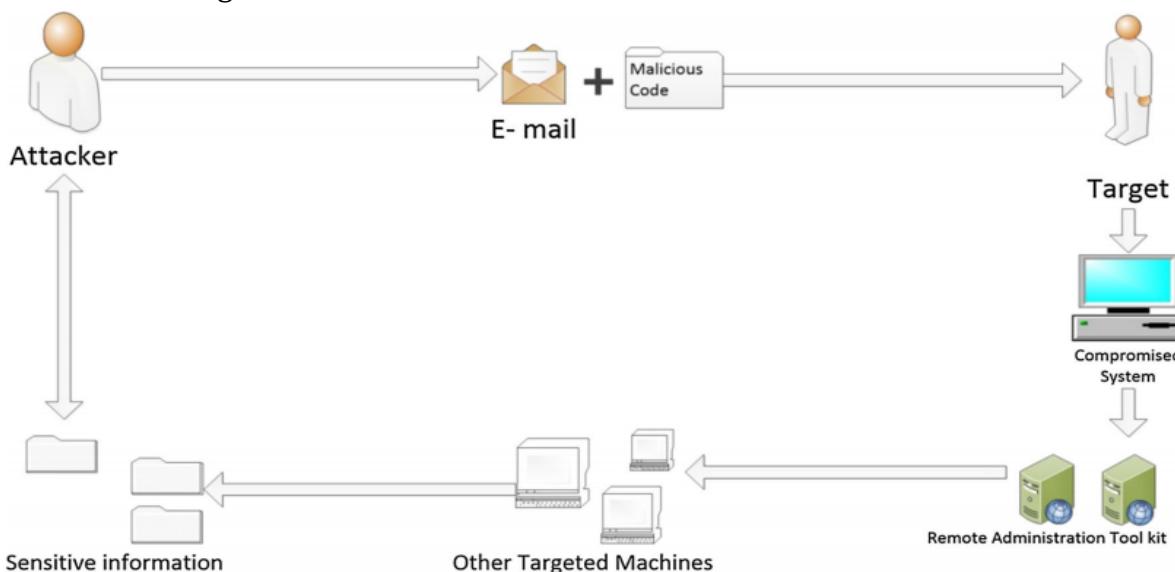


Fig. 1 Attack mechanism by embedding a malicious code on to an email

The figure 1 it clearly shows that the attacker has sending an email to the victim's machine with malicious code to its compromised system which is already decoded through Remote Administration Tool kit. In this whole process, the attackers are also targeting other targeted machines to obtain sensitive information of the victims. Miao and Junshan (2011) said that this type of attacks also called Island Hoping which is maintained to get access to the confidential and sensitive information of the target machines.

Attacking Strategy BYOD (Bring Your Own Device)

The second most employed methodology or strategy in cyber-attack is BYOD. This methodology is mostly used by industrialists to

ensure their cost enhancing benefits with reduced use of human resources. The major threat to this method is that most of the times employees are using devices in their offices as well as their homes and installing third party software which resulted in high risk. The third party software is mostly used to steal the data of any specific industry which led inverse results to the industrial profits (Oliver, Liyan, Robert, & Lang, 2011).

Use of SCADA in Cyber-attacks

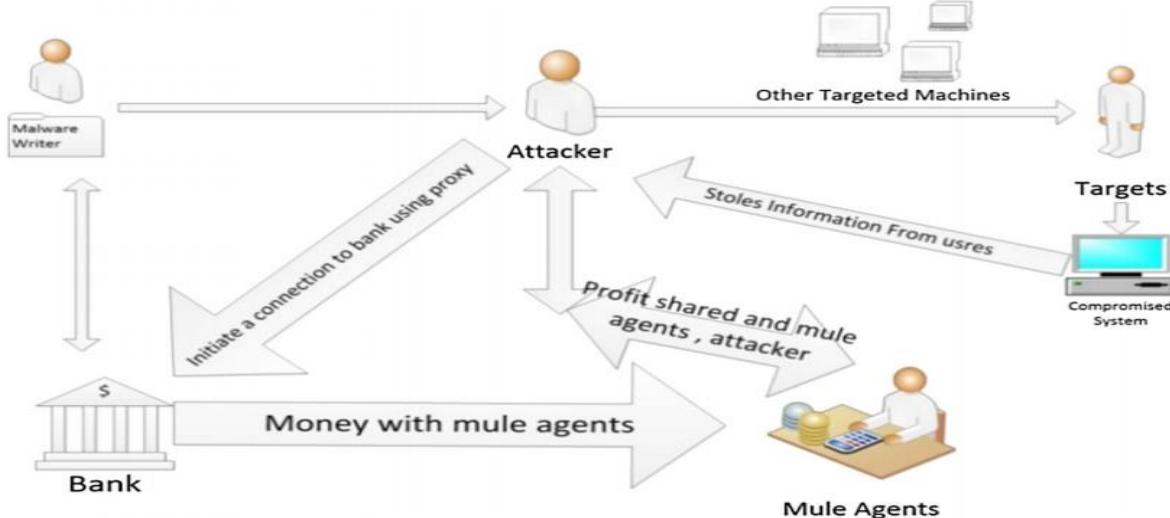
SCADA (Supervisory Control and Data Acquisition) are most commonly applied in industrial sectors. Nuclear power plants and oil treatments have been treated with the help of SCADA. The remote connection has been established with SCADA technology and thus the

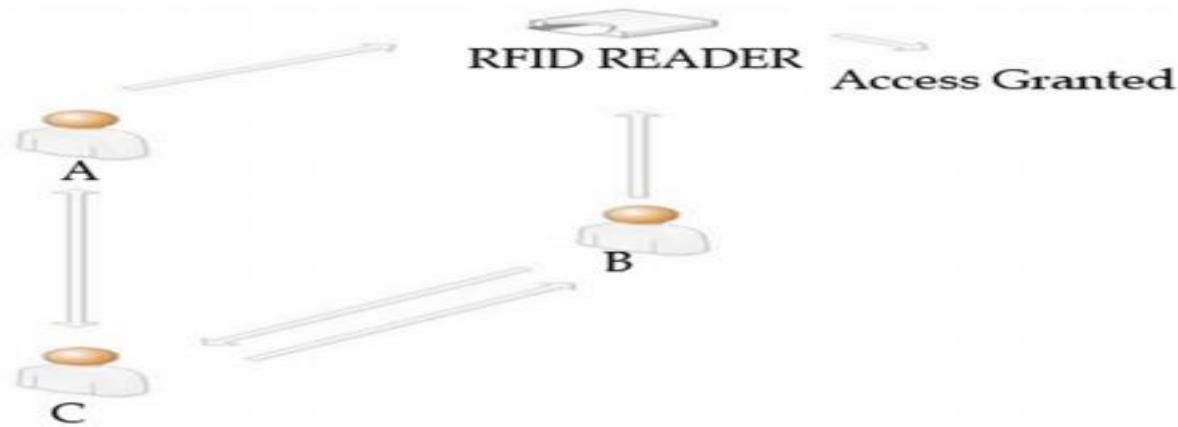
SCADA is most targeted machines by the attackers. SQL injection and script kiddies are used to interrupt and get access to the SCADA based machines (Klaus, 2013).

In this type of attacks, the insiders are hard to determine as authorized systems are responsible for distribution of the systems. Another method is used in crafted packets which used to deceive the State Estimator and Bad Data Detector. It is also known as Stealth Attack (Buyens, & Joosen, 2007). SCADA most commonly used attacks include power disruption which also used even in grown countries Angelyn, & Sherli, 2014). In this way, Physical Security Systems are hanged by the

effective applications. The case study presented in Chapter 2 of Ukraine is also an example of power disruption.

Moreover, the profit sharing life cycle among mule agents, malware writers and attackers is also very important to understand the character of the attackers and mule agents. There is a malware writer who is working on codes and attackers is working at the mid between the target. The gained profits have been divided among attackers and mule agents which gained by the third party or the victims. It has best been described through figure 2.




Fig. 2 Lifecycle of profit sharing among attacker and mule agents

Use of Smart Grids, Smart Devices and Smart Cities

The wider use of smart devices among people is seen in this era. These smart devices are not only used personally yet these are applied in healthcare, automobiles, telecommunication sector etc. The PKI used through the application of Key Less Entry (KLE) applying RFID tags (Amir, & Haya, 2013). There are other attacking strategies used including vulnerability attack: this methodology is used to interrupt the functions of any communication system and de-synchronizing

the feedback. Data injection is also used to influence the measurement meters and manipulate its information (Saar, & Steven, 2007).

These type of attacks resulted in huge loss of electricity transfer and power supply. Another type of attack is International Attack in which an attacker which is able to disrupt the whole system of SCADA as having complete knowledge of computer technology and the case of Maroochy Water Services incident used an evident.

Fig. 3 Attack scenario for RFID

The figure 3 reveals a physical breakage of the systems as Person A has decoded the RFID tags and gets unauthorized entry into the building as RFID tags automatically detected that Person A has card. While Person B has also with not genuine card to enter into the building yet simulating card and Person B applies for the access which is actually granted to B but also enters Person A who is with Person C. This access granted process is deceiving of the RFID system.

IoT (Internet of Things) Attacks

In this Internet era, everyone is on the internet with the help of different devices. These are usually common devices which are easy to tackle by the attacks and caused Sybil Attack and Privacy Attack (Cuijpers, & Bert-Jaap, 2012).

Mimicking Attacks

This kind of attacks can only be determined in

presence of large scale botnets. In discrimination process, there are many active bots found while very few of the inactive users found. DDoS attacks which includes the information publishing or email hacking it also considered as DSNXbot, Evilbot, G-symbol, Sdbot, Spybot etc.

Defensive / Counter Strategies against Cyber-warfare

The secure cyber defense system ensures the existence and sustainability of any individual or party in cyber space. There are certain steps taken to ensure cyber defense. These steps include: "Preparation, Monitoring, Detection, Analysis and Response. Preparation, monitoring and response are known as Triage Analysis" (Katherine, 2003). It is most important to know before taking these steps the type of common and emerging attacks and attack methodologies which are described in following table 1.

Table 1 Common attacks and attack methodology

Common attacks	APT	Island hopping	Attacks to BYOD	Attacks to SCADA	Attacks to smart devices	Attacks to IoT	Mimicking attacks
<i>Attacking methodologies used</i>							
DOS	✓			✓	✓	✓	✓
RAT	✓	✓	✓	✓	✓	✓	
Code injection	✓		✓	✓	✓	✓	
Information theft	✓		✓	✓	✓	✓	✓
Insider			✓	✓			
Anonymity	✓			✓		✓	
Inducing fake identity				✓	✓	✓	
Spams	✓			✓			✓

Further, the table 2 shows the type of hackers, their motives to initiate attacks or series of attacks and also considers their skills level.

Table 2 Common hacker types along with their motivation and skill levels

Hacker types	Motivations						Skill level
	Ideology	Recreation	Prestige	Revenge	Profit	Curiosity	
Novices				✓		✓	Low
Crowd sourcers		✓				✓	Below intermediate
Cyberpunk (hightech outsiders)						✓	Very low
Hacktivists	✓			✓			Very high
Insiders				✓	✓		Intermediate
Coders			✓	✓			Upper intermediate
Cyber warriors	✓				✓		High

By considering the attackers' strategies, motives and their skills level there are some counter strategies employed to avoid any type of loss to the organization as well as any individual.

Denial and deception against zero-day exploit

The firewall era, installation of different virus detection software and use of IDPS (Intrusion Detection and Prevention System) does not ensure the Zero Day Exploit and automatic up gradation of the IDs (Parunak, Paul, Sven, & Rafael, 2007). So, the usage of Denial and deception can ensure the secure cyberspace setup (Kristin, Frank, Ben, & Roshan, 2015). The major goal of the D&D has employed by giving an advantage to the deceiver to convert the psychological state into the physical behaviors. This cyber

degradation enables to fights or deceives (Ryan, 2015). The deception is a chain which works from planning to the execution of the process (Parunak, Paul, Sven, & Rafael, 2007).

The first phase of planning of deception consisted of looking the whole effect of the process and available resources for execution. The second phase adds further deception with reinforcement of cover story (Andre, Saurabh, Henrik, Karl, & Shankar, 2010).

Support vector machine (SVM) method

Another method which is widely employed to ensure zero exploit day with the integration of Self-Organized Ant Colony Network (CSOACN) method. The method first learned the method of data trails of the activity.

Table 3: Defense methods employed commonly to counter cyber-warfare

Defense methods	Attacks				
	APT	BYOD	IoT	Smart grid	RFID
Denial and deception	✓				
SVM and CSOACN	✓			✓	
Security intelligence		✓			
Two player sum game			✓	✓	✓
Moving target defense (MTD)			✓	✓	✓
Ant based defense			✓	✓	✓
Fusion based defense			✓		
Privacy policy enforcement			✓		
Sensor data correlation					✓

Defident

A common method of Intrusion Detection Network (IDN) (Adams, & Lloyd, 2003) also used as DEFIDNET is employed to counter the cyber-attacks (Sergio, Juan, Agustin, & Pedro, 2015). In this method, a multi-tasking algorithm is used to counter the risk of the continuing projects in any industrial area of any type of organization. This is very helpful in at least getting the overall picture of the attack and estimation of the caused damage.

The evolution of the emerging technologies and penetration of the information and communication technologies make it questionable as how the security of the cyberspace is sure? The whole information technology infrastructure and World Wide Web is interconnected with each other and can be accessed from any remote location and even misused. In this cyber world, water industry to telecommunication sector is considered vulnerable to the cyber-attacks.

Cyber-Terrorism Term

There are two claims regarding cyber-terrorism as one school of thought acclaimed that there is no cyber-terrorism yet another school of thought has evidences of wider use of internet by terrorists. This is because of disagreement on the clear definition of terrorism and cyber-terrorism. The word "Terror" originated from the Latin word "terrere" which means to "to frighten, to terrorize, to intimidate" (Wilkinson, 1974). Normally, a series of these terrorist attacks with some

1. Computer-related security incidents are widespread:

The number of cases related to

designated motives led to the terrorism. Bozdemir (1981) defined terrorism as "Terrorism is a strategic approach which, for political purposes, identifies itself with a method which includes the use of organized, systematic and continuous terror" (p. 23). Most of the times, cyber-terrorism is intermixed with the concept of information warfare which is however different in terms. Denning (2000) defines cyber-terrorism in these words "It is generally understood to mean unlawful attacks and threats of attack against computers, networks, and the information stored therein when done to intimidate or coerce a government or its people in furtherance of political or social objectives.

Further, to qualify as cyber terrorism, an attack should result in violence against persons or property, or at least cause enough harm to generate fear" (p. 189). Further, cyber-terrorism defined in recent times as "unlawful attacks and threats of attack against computers, networks, and the information stored therein" in order to "intimidate or coerce a government or its people in furtherance of political or social objectives" (Manap., & Tehrani, 2012: 409).

Ten Emerging Information Warfare Trends

The emerging trends of cyber-warfare and information warfare towards the information industry have changed the concept of military operations and actions. Cronin and Crawford (2007) have suggested four solutions towards these emerging trends:

computer crimes has been increased in coming year as analyzing 6 cases in 1988 while

Table 1. Information warfare framework

Information Warfare Characteristic	1990	2005
1. Computer-related security incidents reported to CERT/CC	252 incidents	137,529 incidents (year 2003)
2. Entry barriers for cyber attackers	High barriers	Low barriers
3. Forms of cyber-weapons	Few forms, lower availability	Many forms, high availability
4. Nations with information warfare programs	Few nations	> 30 nations
5. Economic dependency on information infrastructures	Partial, growing dependency	Heavy dependency
6. Primary target in information conflicts	Both military & private targets	Increasingly private targets
7. Cyber technology use in perception management	Global TV, radio	Ubiquitous, global multi-media
8. Cyber technology use in corporate espionage	Less substantial	Substantial & increasing
9. Cyber technology use in organized crime	Less substantial	Substantial & increasing
10. Cyber technology use against individuals & small businesses	Less substantial	Substantial & increasing

137,529 cases reported in the year 2003. The actual cases are however more than reported as most of the cases did not get public interest and acknowledgement. In year 2005, 20% more cases reported to cybercrime branch of America than to the physical abuse (Gordon, Loeb, Lucyshyn, & Richardson, 2005).

2. Entry barriers are low for cyber attackers: In before times, the hackers are well knowledgeable as some hackers were found students of MIT who were involved in attacks of 1960 (PC World, 2001). In coming years of 1970, the hackers were considered with high profile educational and experience level who were involved in school or business sector (Parker, 2012). Yet, the hackers' systems were changed in 1990s. A Solar Sunrise incident was happening in 1990 by the teenagers under guidance of 18-year boy who got access to the websites of government as well as military sites. In 2002, a website was launched by hackers to introduce the tools and techniques of hacking (Jones, Kovacich, & Luzwick, 2014).

3. Dangerous forms of cyber weapons have emerged: In 1980, the board for the sharing of tools and techniques of hacking was introduced which helped the hackers to enhance their power through sharing and communicating. Through this communication, distributed denial-of-service (DDOS) was the most employed method found. The software was considered responsible for the attacks of February 7, 2000 in which major websites and search engines were shut down including Yahoo, eBay, Amazon, E-Trade, and CNN.

4. Many nations have information warfare capabilities: In early 1990s very few nations were found involved in getting capabilities of information warfare. But in coming years Adams (2016) found many nations like China, India, Taiwan, France, Russia, Israel etc. were capable of information warfare. In the survey of CSI/FBI held on 2003 found that 28% foreign governments are likely to be attacked by the other governments in context of information warfare (Farid & Ashraf, 2025).

Table 2. Financial impact of virus attacks (Source: Computer Economics, 2006)

Worldwide Impact in Billions of U.S. Dollars	
YEAR	IMPACT
2005	14.2
2004	17.5
2003	13.0
2002	11.1
2001	13.2
2000	17.1
1999	13.0
1998	6.1
1997	3.3
1996	1.8
1995	.5

5. **Increased economic dependency on information infrastructures:** The society has been grown from industrial to information based society (Toffler, 2011). Meall (2015) found that Americans were worried about the so much economic dependency on the computers in their report *Computers at risk*. Here are the economic impacts of virus attacks on the economy of the world year wise:
6. The private sector is the primary target: The growing economy and its dependency on the computers and computer networks led the hackers to target the civilian and private sector (Poulsen, 2004).
7. **Cyber technology is increasingly used in perception management:** Perception management can be defined as catchall phrase which is based on the public opinions and perceptions regarding cyber technology (Callamari & Reveron, 2016). The wider use of internet and computer technologies has influenced the common people in making perceptions and sharing them all around (Rattray, 2017).
8. **Cyber technology is increasingly used in corporate espionage:** In March 2001, former French Defence Minister has argued that

Americans are stealing their information through sending devices secretly to their country (Cohen, 2001). The FBI sources said that the average cost of hackers' attack is around \$150,000 while the caused damage is much more than the cost (Cohen, 2001).

9. **Cyber technology is increasingly used by organized crime:** Federal News Service (2003) acclaimed that they have committed an action against the internet economic treasurers who are victimizing the common people. Now days, internet crime has gained a growing crime in whole world. Legard (2013) noted that majority of the accounts were hacked through sending an email to the account and requesting linked website to provide account number and password which could cause huge fraud.
10. **Cyber technology is increasingly used against individuals and small businesses:** Stafford and Urbaczewski (2014) argued that majority of the common people were being victimizing through spyware and adware. According to Microsoft there are almost 70000 spywares were existed and caused the loss and crash of 91% home appliances and PCs (Ahmed et al., 2021).


Use of Cyberspace by Terrorists as Cyber warfare

There are many evidences found in cyberspace that terrorists and their activists are using cyberspace to for the promotion of their ideas as well as for fund raising purposes. Here are some given evidences:

Fundraising

A mentor of Osama Bin Laden, Ozzam has launched *Ozzam Publications* website which was built with the purpose to promote the agenda of Al Qaeda and also generate funds for them. The website contained Jihadi material from books to videos to promote agenda of Al Qaeda. Once the website was blocked and showed no content yet in 2002 the websites was again available to its users and offering the material for purchase.

Figure 1. Example of Azzam multi language sites

Information Warfare

Warran (2015) presented case study of Hezbollah group as their first presence was found with *Figure 2. Early*

limited and minor level information. They were providing their message with the interruption of outer world as seen in figure 2.

Further, they introduced an advanced level website which contained their agenda, political influence, military operations and actions and their available resources. They had included the readers' letters to Hezbollah, multimedia material, cartoons, images and also provided the access through email. Warren (2013) argued that this type of activities was supported by the religious as

International Coordination is Necessary against Cyber Terrorism

Up today there are many steps taken to counter cyber terrorism worldwide. Governments are working in coordination to save the world. Many of the countries have initiated Computer Emergency Response Teams (CERTs) which are used to handle accidental response in this respect. UK and USA are presented as examples and role models for security the data of their common people.

Conclusion, Discussion and Recommendations

The broadcasting of information has now been widespread due to evolution of emerging technologies day by day. The massive communication has new been possible through social media platforms such as Facebook, Flicker, YouTube, Instagram etc. In this environment, it is however not surprising to find terrorist activities and wider use of these applications for terrorist activities (Weimann, 2014).

well as political actors who were playing their games behind the scenes as it was impossible for the Hezbollah to launch a website in the cyber world to promote their agenda. Their latest website view was found as in figure 3.

Figure 3: Latest view of Hezbollah website and available material

Conclusions

Few years ago, it has been seen that majority of the *Jihadists* were doing their activities using internet and social media applications to support their agenda. Even though, they were found promoting radicalization and recruiting new *Jihadists* using "seal the deal". The *Jihadism Online* published and owned by Norwegian Defence Research Establishment (NDRE) found that although there is wider use of internet has been evidenced by terrorists yet there is few evidences found of recruitment through internet (Rogan, 2006, p. 29).

A study conducted in year 2012 revealed through Dutch Intelligence Service that 99.8% terrorist activities took place under cover and at hidden level called "Deep Web or Darknet". The *Jihadists* were finding the person through their discussion on online forums, promotion of radicalization activities and searching for *Jihadist*'s agendas. Weggemans, Bakker and Grol (2014) said that the reasons of individuals' interest in *Jihadists*'

activities are still vague and unclear to the researchers. Yet in some Western countries experiences it has been found that the youth is taking interest within very short time.

The recent cases happened in West like “lone wolf”¹ or “virtual packs of wolfs” led the thinking of the authorities towards the open use of social media sites and outlets. Behr, Reding, Edwards and Gribbon (2013) described that persons are looking on the internet when they have already a mentality of radicalization yet a clear evidence of use of social media or internet for these purposes need to be found.

Another study conducted in 2013 by the RAND Corporation also revealed that there are little evidences found for the promotion of radicalization through internet otherwise physical contact is created. Although causal relationship could not found yet online use for terrorist activities is evidenced.

Discussions

Now the raised question is that how governments can affectively counter this emerging cyber warfare? The taken measures by the governments usually can be categorized into two types; repressive measures and soft measures. The repressive measures can be defined as denial of access of internet services and blockage of websites and social media pages run by the terrorists. This also includes the blockage and restriction of the promotion of radical content and ideas to the common people.

The prominent strategy in this respect “take down measures” has been employed to stop the accounts of ISIS yet it was also observed that they were creating new account further. The impact of this strategy was felt significant as many of the accounts were stopped yet a new number of

¹ “The term “lone wolf” refers to those individuals who, without any physical social contact with extremist individuals or organisations, go to the process of radicalisation on their own, even to the point where they decide to commit terrorist attacks that they conduct on their own”.

accounts were created. Moreover, among soft measures it is also assured that use of effective communication methods to balance the “counter-narrative” of cyber warfare.

Recommendations

The study has posed relevant recommendations for governments, policy makers and decision makers of cyber warfare. These are:

- In cyber space it is very important to take these four parts clearly, the message, the messenger, channel used and communication.
- There should be proper infrastructure and adequate government efforts to counter the cyber warfare and also effective use of emerging technologies to counter cyber warfare attacks
- Cyber defense is also on the risk due to the deficiencies of net neutrality which can be countered by employing privileged high speed internet connections to the concerned departments, media sets and government websites.
- A clear and concise definition of cyber terrorism at government level is need of the time which is interchangeably used as “(e.g. hacking, propaganda, attacking to infrastructures etc.)”
- The nations should work in coordination with the signature of bilateral as well as multilateral agreements to work in cyber security issues
- A collaborative intelligence service should be initiated among working nations to collect and share information before any type of cyber attack
- A team of cyber experts as well as quick response teams should be initiated to counter the cyber-attack and response to the cyber-attacks in quicker way.

References

Adams, J. (2016). Virtual defense. *Foreign Affairs*, 80(3), 98112.

Adams, C., & Lloyd, S. (2019). Understanding PKI:

Concepts, standards, and deployment considerations (pp. 11–15). Boston: Addison-Wesley Professional. *Wireless Networks* 25, 3323–3334.

Aditya, S., & Richard, E. (2023). Targeted cyberattacks: A superset of advanced persistent threats. *Computer and Reliability Societies*, 11(1), 54–61.

Aditya, S., Rohit, B., & Richard, E. (2023). Cybercrime: Dissecting the state of underground enterprise. *IEEE Internet Computing*, 17(1), 60–68.

Ahmed, S., Farid, A., & Ashraf, S. (2021). Climate Change: Implications and Policy Recommendations. *Pakistan Languages and Humanities Review*, 5(2), 170–180.

Ahmed, P., Mona, T., Kaveh, B., & Joaquim, C. J. (2023). An intrusion detection and prevention system in cloud computing: A systematic review. *Journal of Network and Computer Applications*, 36(1), 25–41.

Algemene Inlichtingen en Veiligheidsdienst (AIVD). (February 2012). *Jihadism on the Web: A Breeding Ground for Jihad in the Modern Age*.

Amir, H., & Haya, S. (2013). Vulnerable delegation of DNS resolution. European Symposium on Research in Computer Security (ESORICS). <https://doi.org/10.1007/978-3-642-40203-6-13>

Andrew, N., Stuart, W., Shaun, D., Tanuja, P., & Helge, J. (2022). SCADA security in the light of cyber-warfare. *Computers & Security*, 31(4), 418–436.

Coolsaet, R. (2015). *What drives Europeans to Syria, and to IS? Insights from the Belgian case*. Academia Press.

Farid, A., & Ashraf, S. (2025). Water Security in South Asia: How Indo-Israeli Technological Cooperation Shapes the Future of the Indus Waters Treaty. *Pakistan Social Sciences Review*, 9(2), 456–476.

Angelyn, F., & Sherli, Z. (2014). Cyber war: The what, when, why, and how. *IEEE Technology and Society Magazine*. <https://doi.org/10.1109/MTS.2014.2345196>

Anita, A., Kirsten, W., Daniel, T., Brianne, B., & Emilie, R. (2025). Achieving cyber defense situation awareness: A cognitive task analysis of information assurance analysts. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 49(3), 229–2332.

Bozdemir, M. (2017). What Is Terror and Terrorism?" School of Political Sciences Press and Publication College, 1981, v, vi. See also Wilkinson, P., (op. cit.), p. 17, and Crenshaw, M., 'The Concept of Revolutionary Terrorism', *Journal of Conflict Resolution*, 384–396.

Callamari, P., & Reveron, D. (2016). China's use of perception management. *International Journal of Intelligence & Counter Intelligence*, 16(1), 115–121.

Cohen, W. (2001, March 6). *Former Defense Secretary Cohen's remarks at the 2001 summit*. George Mason University. Retrieved August 10, 2019, from http://www.gmu.edu/departments/law////tec_hcenter/programs/summit/cohen's_2001_remarks.html

Cronin, B., & Crawford, H. (2007). Information warfare: Its applications in military and civilian contexts. *Information Society*, 15(4), 257–264.

Cuijpers, C., & Bert-Jaap, K. (2012). Smart metering and privacy in Europe: lessons from the Dutch case. Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, The Netherlands. Resource Document. Tilburg University. https://pure.uvt.nl/ws/files/1477311/CPDP_final_Cuijper_Koops_springer_1_.pdf. Accessed October 16, 2019.

Daniele, G., Velio, M., Giovanni, M., & Aurelio, C. (2023). Is it feasible to reconstruct body segment 3D position and orientation using accelerometric data? *IEEE Transactions on Biomedical Engineering*, 50(4), 476–483.

Denning, D. (2000, May). Cyber terrorism. Testimony before the Special Oversight Panel on Terrorism," Committee on Armed Services U.S. House of Representatives, Georgetown University, May 2000. <http://www.cs.georgetown.edu/~denning/infosec/cyberterror.html> Jan, Z., Oscar, M., & Klaus, W.

(2014). Privacy in the internet of things: Threats and challenges. *Security and Communication Networks*, 7(12), 2728–2742.

4. Goodman, D. (2018). Why the Police don't care about computer crime. *Law & Technology*, 10(3), 465–494.

Gordon, L. A., Loeb, M. P., Lucyshyn, W., & Richardson, R. (2005). *Tenth Annual, 2005 CSI/FBI Computer Crime and Security Survey*. San Francisco: Computer Security Institute (www.gocsi.com).

Juels, A. (2024). RFID security and privacy: A research survey. *IEEE Journal on Selected Areas in Communications*, 24(12), 381–394.

Katherine, A. (2023). No RFID tracking chips in clothing! Press Release. Boycott Benetton. http://www.boycottbenetton.com/PR_030407.html. Accessed Oct. 9, 2019.

Kristin, H., Frank, S., Ben, S., & Roshan, T. (2019). Denial and deception in cyber defense. *IEEE computer society*, 48(4), 36–44.

John, F., & Andres, F. (2025). SCADA systems: vulnerabilities and remediation. *Journal of Computing Sciences in Colleges*, 20(4), 160–168.

Jones, A., Kovacich, G. L., & Luzwick, P. G. (2024). *Global information warfare: How businesses, governments, and others achieve objectives and attain competitive advantages*. New York: Auerbach Publications.

Manap., N.A., & Tehrani, P.M. (2012). Cyber Terrorism: Issues in Its Interpretation and Enforcement. *International Journal of Information and Electronics Engineering*, 2(3), 409–413.

Meall, L. (2015). Survival of the fittest. *Accountancy (UK)*, 103(1147), 140141.

Miao, H., & Junshan, Z. (2019). A dependency graph approach for fault detection and localization towards secure smart grid. *IEEE Transactions on Smart Grid*, 2(2), 342–351.

Pin-Yu, C., & Kwang-Cheng, C. (2022). Smart attacks in smart grid communication networks. *IEEE Communications Magazine*, 50(8), 24–29.

Parunak, H. V. D., Paul, N., Sven, B., & Rafael, A. (2007). Hybrid multi-agent systems: Integrating swarming and BDI agents. *Engineering Self-Organizing Systems*. <https://doi.org/10.1007/978-3-540-69868-5-1>.

Pin-Yu, C., Shin-Ming, C., & Kwang-Cheng, C. (2024). Information fusion to defend intentional attack in internet of things. *IEEE Internet of Things*, 1(4), 337–348.

Re ̄ka, A., Hawoong, J., & Albert-Lazlo, B. (2000). Error and attack tolerance of complex networks. *Letters to Nature*, 406(6794), 378–382.

Shui, Y., Song, G., & Ivan, S. (2018). Fool me if you can: Mimicking attacks and anti-attacks in cyberspace. *IEEE Transactions on Computers*, 64(1), 139–151.

Rogers, K. (2021). A two-dimensional circumplex approach to the development of a hacker taxonomy. *Digital Investigation*, 3(2), 97–102.

Ryan, S. (2015). A typology of hackers: Classifying cyber malfeasance using a weighted arc circumplex model. *Digital Investigation*. <https://doi.org/10.1016/j.dii.2015.07.002>

Sergio, P., Juan, E. T., Agustin, O., & Pedro, P. L. (2015). DEFIDNET: A framework for optimal allocation of cyber defenses in intrusion detection networks. *Computer Networks*. <https://doi.org/10.1016/j.comnet.2015.01.012>.

Oliver, K., Liyan, J., Robert, J., & Lang, T. (2011). Malicious data attacks on the smart grid. *IEEE Transactions on Smart Grid*, 2(4), 645–658.

Saar, D., & Steven, M. (2007). Keep your enemies close: Distance bounding against smartcard relay attacks, 16th USENIX Security Symposium. Resource Document. Security Symposium. <http://static.usenix.org/events/sec07/tech/driver/drimer.html>. Accessed Sept. 11, 2019. http://csrc.nist.gov/groups/SMA/fisma/ics/documents/MaroochyWater-Services-Case-Study_report.pdf. Accessed October 1, 2019.

Tzipora, H., Haoyu, L., Di, M., Nitesh, S., Jonathan, V., & Tuo, X. (2019). Context-aware defenses to RFID unauthorized reading and relay attacks. *IEEE Transactions on Emerging Topics in Computing*, 1(2), 307–318.

Klaus, J. (2013). Understanding and overcoming cyber security anti-patterns. *Computer Networks*,

57(10), 2206–2211.

Buyens, K., De, W. B., & Joosen, W. (2007). Empirical and statistical analysis of risk analysis-driven techniques for threat management. IEEE Computer Society, the First International Workshop on Secure Software Engineering. <https://doi.org/10.1109/ARES.2007.78>.

Legard, D. (2013, May 14). *Fake bank web site scam reaches U.S.* Retrieved August 10, 2019, from <http://www.itworld.com/Tech/2987/030514fakebank>

Parker, D. B. (2012). *Crime by computer*. New York: Scribners.

PCWorld. (2001, November 19). Timeline: A 40-year history of hacking. *IDG News Service*. Retrieved August 10, 2019, from <http://www.cnn.com/2001/TECH/internet/11/19/hack.history.idg/>

Poulsen, K. (2004, September 27). U.N. warns of nuclear cyber-attack risk. *SecurityFocus*. Retrieved August 10, 2019, from <http://www.securityfocus.com/news/9592>

Rattray, G. J. (2017). *Strategic warfare in cyberspace*. Cambridge, MA: MIT Press.

Rogan, H. (2006). JIHADISM ONLINE-A study of how al-Qaida and radical Islamist groups use the Internet for terrorist purposes.

Ross, B., & Log, R. (2025). Cyber threats reducing the time to detect and respond. *Network Security*, 5(5), 5–8.

Stafford, T. F., & Urbaczewski, A. (2014). Spyware: The ghost in the machine. *Communications of the Association for Information Systems*, 14, 291306.

Toffler, A. (2011). *The third wave*. New York: Bantam Books.

Von Behr, I. (2013). Radicalisation in the digital era: The use of the internet in 15 cases of terrorism and extremism.

Warren, M. J. (2013). *The impact of hackers*. Presented at the Second European Information Warfare Conference, Reading, UK.

Warren, M. J. (2015). *Cyber terrorism*. Presented at the Annual Police Summit, Melbourne, Australia.

Weggemans, D., Bakker, E., & Grol, P. (2014). Who are they and why do they go? The radicalization and preparatory processes of Dutch jihadist foreign fighters. *Perspectives on Terrorism*, 8(4), 100–110.

Weimann, G. (2014). *New terrorism and new media* (Vol. 2). Washington, DC: Commons Lab of the Woodrow Wilson International Center for Scholars.

Wilkinson, P. (1974). *Political terrorism*, London.

Declaration of Conflicting Interest

The author declared no potential conflicts of interest with respect to research.

Funding Statement

No funding is received for this project.